相关阅读

统计学习那些事

有一个关于Gradient Boosting细节不得不提。Friedman在做实验的时候发现,把一棵新生成的决策树,记为f_m,加到当前模型之前,在这棵决策树前乘以一个小的数,即v×f_m(比如v=0.01),再加入到当前模型中,往往大大提高模型的准确度。他把这个叫做“Shrinkage”。接下来,Hastie,Tibshirani和Friedman进一步发现(我发现大师们都是亲自动手写程序做实验的),如果把具有Shrinkage的Gradient Boosting应用到线性回归中时,得到的Solution Path与Lasso的Solution Path惊人地相似(如图所示)!他们把这一结果写在了ESL的第一版里,并推测这二者存在着某种紧密的联系,但精确的数学关系他们当时也不清楚。Tibshirani说他们还请教了斯坦福的优化大师(我估计是Stephen Boyd),但还是没有找到答案。

通识大讲堂

后来Tibshirani找到自己的恩师Efron。Tibshirani在“The Science of Bradley Efron”这本书的序言里写道,“He sat down and pretty much single-handedly solved the problem. Along the way, he developed a new algorithm, ‘least angle regression,’ which is interesting in its own right, and sheds great statistical insight on the Lasso.”我就不逐字逐句翻译了,大意是:Efron独自摆平了这个问题,与此同时发明了“Least angle regression (LAR)”。Efron结论是Lasso和Boosting的确有很紧密的数学联系,它们都可以通过修改LAR得到。更令人惊叹的是LAR具有非常明确的几何意义。于是,Tibshirani在序言中还有一句,“In this work, Brad shows his great mathematical power–not the twentieth century, abstract kind of math, but the old-fashioned kind: geometric insight and analysis.”读Prof Efron的文章,可以感受到古典几何学与现代统计学的结合之美(推荐大家读读Efron教授2010年的一本新书Large-Scale Inference,希望以后有机会再写写这方面的体会)!总之,Efron的这篇文章是现代统计学的里程碑,它结束了一个时代,开启了另一个时代。

 

[1]   [2]   [3]   [4]   [5]   [6]

 

分享到: